Exercices

Décomposer un nombre entier en produit de facteurs premiers

(1) Nombres premiers

a. Quels sont les diviseurs :
\cdot de 11 ? •de 13 ? •de 5 ? •de 1 ?
b. Un nombre qui n'a que deux diviseurs, 1 et lui-même, est appelé un nombre premier. Écrire tous les nombres premiers parmi les nombres de 0 à 30 .
c. Expliquer pourquoi les nombres suivants ne sont pas premiers :

- 32
-45
- 51
- 72
- 81

(2) Décomposition

a. On a demandé d'écrire le nombre 40 comme produit de nombres premiers.

Quels produits vérifient cette consigne?

- 4×10
- $2 \times 2 \times 10$
- $2 \times 2 \times 2 \times 5$
- $16 \times 2,5$
- 5×8
- $2^{3} \times 5$
b. Écrire le nombre 180 comme produit de nombres premiers.

2 Rendre irréductible une fraction
Dans un collège de 840 élèves, il y a 360 demi-pensionnaires. $\frac{360}{840}$ représente la proportion d'élèves demi-pensionnaires du collège.
(1) On se propose de simplifier cette fraction à la main.
a. Les nombres 360 et 840 sont divisibles par 10.
En déduire une fraction simplifiée égale à $\frac{360}{840}$.

b. La fraction obtenue est encore simplifiable par 4. Quelle fraction obtient-on?
c. Par quel nombre peut-on encore simplifier la fraction obtenue?

Quelle fraction obtient-on?
d. La fraction obtenue peut-elle être encore simplifiée ? Expliquer pourquoi.

On dit alors que cette fraction est irréductible.
2. Pour rendre irréductible une fraction, on peut aussi écrire le numérateur et le dénominateur comme produits de facteurs premiers.
a. Vérifier que $360=2^{3} \times 3^{2} \times 5$ et $840=2^{3} \times 3 \times 5 \times 7$.
b. Utiliser les propriétés sur les puissances pour rendre irréductible la fraction $\frac{360}{840}$.

37 a. Écrire les nombres entiers de 1 à 100 dans un tableau tel que celui commencé ci-dessous :

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
20	23	24	25	26	27	28	29	30	

b. Barrer 1, puis barrer tous les multiples de 2 sauf 2 .
c. Le premier nombre non barré après 2 est 3 . Barrer tous les multiples de 3 sauf 3.
d. Le premier nombre non barré après 3 est 5 . Barrer tous les multiples de 5 sauf 5 .
e. Continuer ainsi.

Tous les nombres non barrés sont des nombres premiers inférieurs à 100 .
Ce procédé est appelé le crible d'Ératosthène, du nom du mathématicien grec (iIIe siècle avant J.-C.) qui l'a établi.

46 Décomposer chaque nombre en produit de facteurs premiers.
a. 550
b. 320
c. 425
d. 1000

53 1. Écrire la décomposition en produit de facteurs premiers de 45, puis de 150.
2. Dans chaque cas, dire, sans calcul, si le nombre est un diviseur de 45, puis de 150.
a. 3
b. $3^{2} \times 5$
c. 2×5^{2}
d. 3×5^{2}
e. 5×7
f. $2 \times 3 \times 11$
3. Utiliser les décompositions obtenues à la question 1 pour donner le plus grand diviseur commun à 45 et 150.

56 Voici deux décompositions en produit de facteurs premiers.

$$
520=2^{3} \times 5 \times 13 \quad 390=2 \times 3 \times 5 \times 13
$$

Rendre irréductible chaque fraction, puis vérifier avec la calculatrice.
a. $\frac{520}{390}$
b. $\frac{52}{390}$
c. $\frac{26}{39}$
d. $\frac{1040}{780}$

41 Parmi les produits suivants, trouver les décompositions en produit de facteurs premiers du nombre 100 et du nombre 102 .

- 2×51
- $10 \times 5 \times 2$
- $5 \times 2 \times 2$
- $2 \times 2 \times 5 \times 5$
- $2 \times 17 \times 3$
- 2×50

42 Jules a écrit : $224=7 \times 8 \times 4$.
a. Est-ce la décomposition en produit de facteurs premiers du nombre 224 ?
b. Déterminer la décomposition en produit de facteurs premiers du nombre 224.

43 Nadia a remarqué que $256=16 \times 16$.
À l'aide de cette remarque, écrire la décomposition en produit de facteurs premiers du nombre 256.

47 Dans chaque cas, décomposer en produit de facteurs premiers.
a. 27×24
b. 26×38
c. 63×23

54 Rendre irréductible les fractions avec les critères de divisibilité, puis vérifier avec la calculatrice.
a. $\frac{60}{40}$
b. $\frac{126}{198}$
c. $\frac{105}{90}$

55 Rendre irréductible chaque fraction.
a. $\frac{2^{3} \times 5 \times 11}{2 \times 3 \times 5^{2}}$
b. $\frac{2^{2} \times 3^{4} \times 5^{2} \times 7}{2^{4} \times 3^{2} \times 5^{2} \times 7^{2}}$

57 Décomposer 224 et 280 en produit de facteurs premiers et rendre irréductible la fraction $\frac{224}{280}$.

58 1. Décomposer en produits de facteurs premiers chaque nombre.
a. 68
b. 96
c. 180
2. Rendre irréductible chaque fraction.
a. $\frac{96}{68}$
b. $\frac{180}{96}$
c. $\frac{68}{180}$

116 Mathématiser un problème concret

Le CDI d'un collège doit être réaménagé en deux parties distinctes : une salle de recherche et une salle de travail. On souhaite recouvrir le sol de la salle de travail d'un nombre entier de dalles carrées identiques de côté c le plus grand possible.

1. a. Donner, en cm , les dimensions de la salle de travail.
b. L'objectif des documentalistes est-il réalisé ?
2. a. Décomposer 550 et 800 en produit de facteurs premiers.
b. En déduire la valeur de c.

Combien de dalles sont nécessaires pour recouvrir le sol de la salle de travail ?
c. Les dalles coûtent $13,50 €$ le m². Quelle sera la dépense pour recouvrir le sol de la salle de travail ?

Doc. 1 Vue de la surface du sol du CDI

Doc. 2 L'objectif

Les documentalistes souhaitent placer la séparation [MF] de façon que les deux salles de travail aient la même aire.

